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Abstract

This paper presents a simple formulation to deal with flexible multi-body dynamic systems by the finite
element method. The proposed methodology is based on the minimum potential energy theorem written
regarding nodal positions. Velocity, acceleration and strain are achieved directly from positions, not
displacements. A non-dimensional space is created and the relative curvature and fibers length are
calculated for both reference and deformed configurations and used to calculate the strain energy at general
points. The classical Newmark equations are used to integrate time. Damping is introduced into the
mechanical system by a rheonomic energy functional. The final formulation has the advantage of being
simple and easy to teach, when compared to classical counterparts. The behavior of a bench-mark problem
(spin-up maneuver) is studied regarding the influence of mass representation on its overall transient and
steady-state behavior. Three other examples are presented to show the applicability of the technique,
namely, a flexible slider–crank mechanism, a flexible beam flight and a Peaucellier-type mechanism. The
results are compared with other authors’ numerical solutions.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A great number of interesting researches have been developed regarding the transient dynamic
analysis of flexible structures undergoing large motions. Simo and Vu Quoc’s paper [1] describes
see front matter r 2005 Elsevier Ltd. All rights reserved.
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various different formulations for this purpose. The authors were interested mainly in the rotating
beam stiffens due to inertial forces, proving that some previous formulations were unable to
reproduce this important property. In that study three valid formulations were cited. The first one
is the so-called corotational formulation, which uses a consistent linearization of the fully
nonlinear beam theory. It makes use of a ‘‘floating frame’’ that accompanies the overall
movement of the rotating bar. The strain measurement is of the second-order expansion, using the
auxiliary floating frame as a reference, see Refs. [2,3].
The second one is called exact [1] and uses the fully nonlinear strain measurement. It also uses

the floating frame as an intermediate reference, calculating the strains from this reference and then
rotating them to the inertial reference. For both formulations the associated differential equation
is achieved and afterwards the standard Galerkin approximation is employed to solve the
problem.
The third formulation [4] employs a finite element procedure based on the theorem of minimum

potential energy assuming a centerline elongation based on curvilinear coordinates and a first-
order distortion. It is interesting to mention that the majority of dynamic nonlinear analyses
is made following a corotational linearized procedure, where a floating frame reference is
present [5–8].
The common point of all cited formulations is the intrinsic relation between strain and

displacements, linearized or not, using a floating frame or curvilinear coordinates as a reference
and considering the Timoshenko–Reissner hypothesis for the beam kinematics.
This study presents a simple formulation to deal with flexible multi-body dynamic systems

(including the rotating beam) based on the principle of minimum potential energy. It is different
from all other approaches as it is based on position description, not displacement, does not use a
floating frame to define strain and adopts the Bernoulli hypothesis for beam kinematics.
The strain measurement used can be classified as the fully one, following [1], but is not written

following the same steps of classical works, it uses simple formulas derived from undergraduate
engineering textbooks. This engineering view will be emphasized here by calling the fully strain
measurement engineering nonlinear strain. The choice for Bernoulli hypothesis, together with the
engineering view of beams kinematics, makes the present formulation quite simple, resulting in an
easy procedure to teach.
The paper also shows that adopting concentrated or distributed mass, with or without

rotational inertia, has small importance in the overall behavior of the slender rotating beam
problem, and that the proposed simple approach is able to capture all the desired effects when
compared to the benchmark solution.
To solve the transient problem the Newmark time integrator scheme [9] is employed together

with the proposed position description. Results show that the proposed formulation is suitable for
dynamic geometrical nonlinear problems with large deflection and rotations, mainly for multi-
body applications.
Section 2 describes an easy way to understand and compute the strain measurement. It presents

the adopted approximation and the numerical calculations to achieve strain. Section 3 shows the
nonlinear dynamic formulation based on the minimum potential energy theorem (written
regarding nodal positions). Section 4 devotes special attention to the calculation of strain energy
and its derivatives. It also describes the kinetic energy and its derivatives in order to built the
nonlinear equilibrium equation and the numerical process of solution. In Section 5, for
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completeness, the simple nodal member connection used to compose multi-body systems is
shown. Section 6 presents four examples to demonstrate the accuracy and applicability of the
formulation. The conclusions are presented in Section 7 and the references are listed at the end of
the paper.
2. Adopted kinematics and strain calculation

A general configuration, ‘‘0’’ for initial or ‘‘A’’ for actual, of the center line of the frame element
is written as a function of the nodal positions following, for instance, a cubic approximation for Y
coordinates, regarding X coordinates.
Fig. 1 displays the nodal positions of node one XX

1 ;Y
X
1 ; y

X
1

� �
or for node two XX

2 ;Y
X
2 ; y

X
2

� �
,

where the symbol X may assume ‘‘0’’ for initial configuration or ‘‘A’’ for actual configuration.
Writing y as a function of x gives a false impression that x is not a variable of the problem. In

order to represent the studied body in a more suitable way, a non-dimensional space, represented
by the variable x varying from 0 to 1, is created. Any pair x0; y0

� �
for the initial position or

xA; yA
� �

for the actual one is written as a function of x, as follows:

x ¼ X 1 þ lxx, (1)

where

lx ¼ ðX 2 � X 1Þ, (2)
x

ξ

θ1

θ2

0 1

y

x2

Y2

x1

Y1

�

Fig. 1. Central line and nodal positions for both initial and actual configurations.
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y ¼ cx3 þ hx2 þ exþ f , (3)

with

c ¼ tg y2ð Þ þ tg y1ð Þ½ �lx � 2ly, (4)

h ¼ 3ly � tg y2ð Þ þ 2tg y1ð Þ½ �lx, (5)

e ¼ tg y1ð Þlx, (6)

f ¼ Y 1, (7)

and

ly ¼ ðY 2 � Y 1Þ. (8)

It is important to note that for this approximation it is necessary to adjust the reference system
to give lxa0. For any configuration, omitting symbol X and following [10,11], the curvature
written regarding the non-dimensional parameter x is

1

r
¼

dx
dx

d2y

dx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx
dx

� �2
þ

dy
dx

� �2r !3
. (9)

Or, replacing the given approximation, Eq. (3), results:

1

r
¼

lxð6cxþ 2hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2x þ ð3cx2 þ 2hxþ eÞ2

q� �3
. (10)

For slender bars, the Bernoulli hypothesis states that the plane cross-section remains plane and
orthogonal to the central line of the bar after deformation. This hypothesis results in a
proportional (longitudinal strain) to the curvature of the bar. It is also proportional to the
orthogonal distance ‘‘z’’ (from the central line) of the considered point. Considering the non-
dimensional space as an auxiliary reference, one writes

�X ¼
1

r

� �X

z. (11)

Two additional considerations have to be made for expression (11). First the reference
configuration must be the initial one, not the auxiliary one, resulting in

�bending ¼ �
A � �0 ¼

1

r

� �A

�
1

r

� �0
" #

z. (12)

The second consideration is that besides the bending strain, there is an elongation of the central
line, so the total bending strain is rewritten as

�bending ¼ �central þ
1

r

� �A

�
1

r

� �0
" #

z, (13)



ARTICLE IN PRESS

M. Greco, H.B. Coda / Journal of Sound and Vibration 290 (2006) 1141–1174 1145
where �central is the nonlinear engineering strain at the central line. Again, considering the auxiliary
non-dimensional variable x it is possible to calculate the central strain as

�central ¼
dsA � ds0

ds0
¼

dsA

dx �
ds0

dx
ds0

dx

, (14)

where ds0 is the infinitesimal length of the initial central line and dsA is the infinitesimal length of
the central line for actual configuration. In this study, for simplicity, initially straight frame
elements are adopted, so the necessary values to calculate the central strain are

ds0

dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX 0

dx

� �2

þ
dY 0

dx

� �2
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0xÞ

2
þ ðl0yÞ

2
q

¼ l0, (15)

where l0 is the initial length of the finite element, and

dsA

dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX A

dx

� �2

þ
dY A

dx

� �2
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lxð Þ

2
þ 3cx2 þ 2hxþ e
� �2q

. (16)

Substituting Eqs. (15) and (16) in Eq. (14) results

�central ¼
1

l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlxÞ

2
þ ð3cx2 þ 2hxþ eÞ2

q
� 1. (17)

Placing Eqs. (10), (13) and (17) together, and remembering that the initial configuration is a
straight element, one has

�bending ¼
1

l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlxÞ

2
þ ð3cx2 þ 2hxþ eÞ2

q
� 1þ

lxð6cxþ 2hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2x þ ð3cx2 þ 2hxþ eÞ2

q� �3
z, (18)

where the constants c, h, e and lx are written regarding the actual nodal positions
Xi ¼ (X1,Y1, y1,X2,Y2, y2) and the values l0 and z depend upon the initial geometry of the frame
element. It is important to remember that the strain measurement is of the Lagrangian type and is
similar to the fully strain measurement. The adopted kinematics is the Bernoulli one, which results
in a different formulation when compared to the references.
3. Dynamic nonlinear formulation with damping (general aspects)

The conservation of energy in a mechanical system is guaranteed if the input and output of
energy are at balance. If there is some kind of dissipation the total energy of the system changes
along time. It can be understood writing the total potential energy of a system as follows:

P ¼ P0 �Qðt; xÞ, (19)

where Q(t, x) can be stated as the quantity of energy withdrawn from the simple conservative
idealized energy P0 [12]. P is the remaining (actual) mechanical energy of the system. Eq. (19)
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can be rewritten as

P0 ¼ PþQðt; xÞ. (20)

This equation can be understood as recovering the possibility of using stationary properties for
the mechanical system analysis, i.e., one can use the minimum potential energy theorem on the
energy function P0 for equilibrium analysis.
For a structural problem associated with a fixed reference system, Fig. 2, the ideal potential

energy function can be written as the composition of the strain energy (Ue), the potential energy of
applied forces (P), the kinetic energy (K) and dissipation (Q), as follows.

P0 ¼ Ue � Pþ K þQ. (21)

The strain energy function of the body, frame for instance, is considered stored in the initial volume
of the body (V0) and is written as an integral of a specific strain energy value (ue), as follows.

Ue ¼

Z
V 0

ue dV0. (22)

The strain energy is assumed to be zero in the initial position, called non-deformed. The adopted
specific strain energy expression is given in Section 4. The potential energy of the applied
conservative concentrated forces is written as

P ¼ �FiX i, (23)
Ue

Ue
0

F

F

x0

x

x

Fig. 2. Potential energy written for a structure in two different positions.
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where Fi represents forces (or moments) applied in ‘‘i’’ direction and Xi is the ith coordinate
parameter of the point where the load is applied. In this study distributed forces are not considered.
The kinetic energy is given by

K ¼
1

2

Z
V0

r0 _xi _xi dV0, (24)

where _xi are velocities and r0 is the mass density. The dissipative term is written in its differential
form as

q
qX i

Q t; xð Þ ¼

Z
v0

q
qX i

q x; tð Þ dV0 ¼

Z
v0

lm _xi dV0, (25)

where q is the specific dissipative functional, lm is a proportionality constant and Xi is the position
of any specific point (for FEM it is a nodal position).
It is interesting to observe that the potential energy of the applied forces may not be zero in the

reference configuration. Substituting Eqs. (22)–(25) in Eq. (21) results in

P0 ¼

Z
V0

ue dV0 � FiX i þ
1

2

Z
V0

r0 _xi _xi dV0 þQ. (26)

This energy function can be evaluated substituting the exact position field by its approximation
described in Section 2, i.e.:

P0 ¼

Z
V0

ueðx;X iÞ dV0 � FiX i þ
1

2

Z
V0

r0 _x
2
i ðx;X iÞ dV0 þQðx;X iÞ. (27)

The minimum potential energy theorem is used in P0, by differentiating Eq. (27) regarding a
generic nodal position Xs, which results in

qP0

qX s

¼

Z
V0

queðx;X iÞ

qX s

dV0 � Fs þ

Z
V0

r0 _xiðx;X iÞ
q _xiðx;X iÞ

qX s

dV0 þ

Z
V0

lmr0 _xsðx;X iÞ dV0 ¼ 0.

(28)

In a vector form Eq. (28) is simply written as

g ¼
qUe

qX s

þ F inert: þ Fdamp: � F ext ¼ 0. (29)

The vector of inertial force is Finert., the force due to damping is Fdamp. and the external force is
Fext.. The term qUe

qX s
is called here elastic internal force. It is important to remember that for

Lagrangian description the mass and damping influences are integrated over the initial volume, as
well as the derivative of strain energy. The size of the vectors is the number of degrees of freedom
of the analyzed body, associated with parameters Xs ¼ (Xs,Ys, ys) of each node s. The necessary
algebraic calculations for each term of Eq. (28) are performed in further sections.
The equilibrium equation (28) or (29) at an instant t is nonlinear regarding Xi. In order to solve

it, a Taylor expansion regarding Xi is used as follows:

gðX k þ DX kÞ ¼ gðX kÞ þ
qgðX kÞ

qX k

DX k þO2 ¼ 0. (30)
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Neglecting higher-order errors O2 one writes

DX k ¼ �
qgðX kÞ

qX k

� ��1
gðX kÞ (31)

with (for conservative loads)

qg

qX k

¼

Z
V0

q2ueðx;X iÞ

qX sqX k

dV0 þ

Z
V 0

r0
q _xiðx;X iÞ

qX k

q _xiðx;X iÞ

qX s

þ _xiðx;X iÞ
q2 _xiðx;X iÞ

qX s@X k

� �
dV0

þ

Z
V0

lmr0
q _xiðx;X iÞ

qX k

dV0 ¼ 0. ð32Þ

In expression (32), the first term, at the central expression, represents the Hessian matrix, called
stiffness matrix for linear analysis. The mass characteristics of the body are present in the second
term and the damping properties are in the last term. To solve Eq. (29) (or Eq. (28)) for a specific
time step one calculates g for an arbitrary Xk (usually the last known one) using expression (29),
calculates qg

qX k
using relation (32) and DXk using Eq. (31), updates Xk, returns to Eq. (29) and

repeats all the procedure until DXk could be neglected.
4. Dynamic nonlinear formulation with damping (practical procedure)

In this part of the paper, sections two and three are coupled, in order to solve numerically the
studied dynamic nonlinear problem.

4.1. Strain energy, internal elastic forces and Hessian matrix

As previously mentioned, Eqs. (28), (29) and (32), the elastic internal force and the Hessian
matrix are given by

F el ¼
qUe

qX i

¼

Z
V0

que

qX i

dV0 ¼

Z
V0

ue;i dV0, (33a)

H ¼

Z
V0

q2ueðx;X sÞ

qX iqX k

dV0 ¼

Z
V 0

ue;ik dV0, (33b)

where ue is the specific (per unity of volume) strain energy and the comma means partial
derivative. In order to calculate these quantities one defines specific strain energy for one-
dimensional elasticity and Bernoulli hypothesis by

ue ¼
E

2
ð�bendingÞ

2. (34)

Substituting Eq. (18) into Eq. (34) and remembering the parametric approximation defined
from Eqs. (1)–(8), in a compact form, one writes

ue ¼ T

ffiffiffiffi
B
p

l0
� 1

� �2

þ FGB�3, (35)
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where

T ¼
EAl0

2
(36)

F ¼
EIl0

2
, (37)

B ¼ ðlxÞ
2
þ SðxÞ, (38)

G ¼ ðlxÞ
2NðxÞ, (39)

SðxÞ ¼ s2ðxÞ, (40)

sðxÞ ¼ 3cx2 þ 2hxþ e, (41)

NðxÞ ¼ n2ðxÞ, (42)

nðxÞ ¼ 6cxþ 2h. (43)

From Eq. (35) one writes

ue;i ¼
T

l20
1�

l0ffiffiffiffi
B
p

� �
B;i þ

FBG;i � 3FB;iG

B4
, (44)

ue;ik ¼
T

l20

l0B;iB;k

2B2=3
þ 1�

l0ffiffiffiffi
B
p

� �
B;ik

� 	

þ
F

B5
�3B G;iB;k þ G;kB;i þ GB;ik

� �
þ G;ikB2 þ 12GB;iB;k


 �
. ð45Þ

In order to complete the necessary values one calculates the following variables B,i B,k B,ik G,i

G,k G,ik, remembering that (1,2,3,4,5,6) ¼ (X1,Y1,Y1,X2,Y2,Y2). To simplify the calculations one
could note that

q
qX 1
¼ �

q
qlx

;
q

qX 2
¼

q
qlx

;
q

qY 1
¼ �

q
qly

;
q

qY 2
¼

q
qly

. (46)

The following notation is adopted to develop a computational program:

q2N
qlx@ly

¼ D2NLXLY ;
q2N

qlxqY1
¼ D2NLXT1 (47)

and

G;i ¼ Gi; G;ik ¼ Gik. (48)

The first derivatives of B and G are given explicitly in Table 1. The second derivatives are
symmetric and therefore only their superior parts are shown in Table 2.
The values of Tables 1 and 2 will be numerically available from variables of the kind

D2NLXLX presented in Table 3.
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Table 2

Second derivatives regarding nodal parameters

B11 ¼ 2þD2SLXLX G11 ¼ 2N þ 4LXDNLX þ ðLX Þ2D2NLXLX

B12 ¼ 2SLXLY G12 ¼ 2LXDNLY þ ðLX Þ2D2NLXLY

B13 ¼ �D2SLXT1 G13 ¼ �ð2LXDNT1þ ðLX Þ2D2NLXT1Þ

B14 ¼ �B11 G14 ¼ �G11

B15 ¼ �B12 G15 ¼ �G12

B16 ¼ �D2SLXT2 G16 ¼ �ð2LXDNT2þ ðLX Þ2D2NLXT2Þ

B22 ¼ D2SLYLY G22 ¼ ðLX Þ2D2NLYLY

B23 ¼ �D2SLYT1 G23 ¼ �ðLX Þ2D2NLYT1

B24 ¼ �B21 G24 ¼ �G21

B25 ¼ �B22 G25 ¼ �G22

B26 ¼ �D2SLYT2 G26 ¼ �ðLX Þ2D2NLYT2

B33 ¼ D2ST1T1 G33 ¼ ðLX Þ2D2NT1T1

B34 ¼ �B31 G34 ¼ �G31

B35 ¼ �B32 G35 ¼ �G32

B36 ¼ D2ST1T2 G36 ¼ ðLX Þ2D2NT1T2

B44 ¼ �B41 G44 ¼ G11

B45 ¼ �B42 G45 ¼ �G42

B46 ¼ D2SLXT2 G46 ¼ �G16

B55 ¼ B22 G55 ¼ G22

B56 ¼ D2SLYT2 G56 ¼ ðLX Þ2D2NLYT2

B66 ¼ D2ST2T2 G66 ¼ ðLX Þ2D2NT2T2

Table 1

First derivatives regarding nodal parameters

B1 ¼ �ð2LX þDSLX Þ G1 ¼ �ð2LXN þ ðLX Þ2DNLX Þ

B2 ¼ �DSLY G2 ¼ �ðLX Þ2DNLY

B3 ¼ DST1 G3 ¼ ðLX Þ2DNT1

B4 ¼ 2LX þDSLX G4 ¼ 2LXN þ ðLX Þ2DNLX

B5 ¼ DSLY G5 ¼ ðLX Þ2DNLY

B6 ¼ DST2 G6 ¼ ðLX Þ2DNT2

M. Greco, H.B. Coda / Journal of Sound and Vibration 290 (2006) 1141–11741150
In order to reduce the complexity of notation, one may use index (1, 2, 3, 4) in place of
(LX,LY,T1,T2) by doing so, Table 3 is condensed to the following expression:

DSðiÞ ¼ 2sDsðiÞ; DNðiÞ ¼ 2nDnðiÞ. (49)

The second derivatives regarding nodal parameters can be written as

D2Sði; jÞ ¼ 2DsðiÞDsðjÞ þ 2sD2sði; jÞ; D2Nði; jÞ ¼ 2DnðiÞDnðjÞ þ 2nD2nði; jÞ. (50)

For example, if i ¼ 1 and j ¼ 3 one has D2sð1; 3Þ ¼ D2sLXT1.
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Table 3

First derivatives regarding nodal parameters for functions S and N

DSLX ¼ 2sDsLX DNLX ¼ 2nDnLX

DSLY ¼ 2sDsLY DNLY ¼ 2nDnLY

DST1 ¼ 2sDsT1 DNT1 ¼ 2nDnT1

DSLX ¼ 2sDsT2 DNT2 ¼ 2nDnT2

Table 4

First derivatives of approximation ‘constants’ regarding nodal variables

vc1 ¼ tan T1þ tan gT2 vh1 ¼ �ð2tan T1þ tan gT2Þ ve1 ¼ tan T1

vc2 ¼ �2 vh2 ¼ 3 ve2 ¼ 0

vc3 ¼ LX sec2 T1 vh3 ¼ �2Lx sec2 T1 ve3 ¼ LX sec2 T1

vc4 ¼ LX sec2 T2 vh4 ¼ �LX sec2 T2 ve4 ¼ 0

M. Greco, H.B. Coda / Journal of Sound and Vibration 290 (2006) 1141–1174 1151
From expressions (41) and (43), variables Ds(i), Ds(j), and Ds(I,j) can be found as

qsðtÞ

qvi

¼ DsðiÞ ¼ 3c;ix
2
þ 2h;ixþ e;i, (51)

qnðtÞ

qvi

¼ DnðiÞ ¼ 6c;ixþ 2h;i, (52)

q2sðtÞ
qviqvj

¼ D2sði; jÞ ¼ 3c;ijx
2
þ 2h;ijxþ e;ij, (53)

q2nðtÞ
qviqvj

¼ D2nði; jÞ ¼ 6c;ijxþ 2h;ij, (54)

where vi represents variables (LX,LY,T1,T2).
In order to complete the procedure it is necessary to calculate the derivatives of the ‘constants’

(in reality they are variables which depend on the nodal positions) of the approximations
functions regarding the nodal parameters. Using vci ¼ c,i and d2cij ¼ c,ij and doing the same for
‘h’ and ‘e’, one has the values described in Tables 4 and 5.
4.2. The mass matrix

Three different mass matrices will be derived in this work in order to show the dependence of
general problems regarding the mass approximation adopted.
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Table 5

Second derivatives of approximation ‘constants’ regarding nodal variables

d2c11 ¼ 0 d2h11 ¼ 0 d2e11 ¼ 0

d2c12 ¼ 0 d2h12 ¼ 0 d2e12 ¼ 0

d2c13 ¼ sec2T1 d2h13 ¼ �2sec2 T1 d2e13 ¼ sec2 T1

d2c14 ¼ sec2T2 d2h14 ¼ �sec2 T2 d2e14 ¼ 0

d2c21 ¼ 0 d2h21 ¼ 0 d2e21 ¼ 0

d2c22 ¼ 0 d2h22 ¼ 0 d2e22 ¼ 0

d2c23 ¼ 0 d2h23 ¼ 0 d2e23 ¼ 0

d2c24 ¼ 0 d2h24 ¼ 0 d2e24 ¼ 0

d2c31 ¼ sec2T1 d2h31 ¼ �2sec2 T1 d2e31 ¼ sec2 T1

d2c32 ¼ 0 d2h32 ¼ 0 d2e32 ¼ 0

d2c33 ¼ 2Lx sec3T1 sen T1 d2h33 ¼ �4Lx sec3 T1 sen T1 d2e33 ¼ 2Lx sec3 T1 sin T1

d2c34 ¼ 0 d2h34 ¼ 0 d2e34 ¼ 0

d2c41 ¼ sec2 T2 d2h41 ¼ �sec2 T2 d2e41 ¼ 0

d2c42 ¼ 0 d2h42 ¼ 0 d2e42 ¼ 0

d2c43 ¼ 0 d2h43 ¼ 0 d2e43 ¼ 0

d2c44 ¼ 2Lx sec3 T2 sen T2 d2h44 ¼ �2Lx sec3 T2 sen T2 d2e44 ¼ 0
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4.2.1. Lumped mass matrix

The lumped mass matrix is characterized by concentrating the mass at the nodes of the element,
so the approximation of variables (1)–(8) is not followed by mass distribution.
Expression (24) in this situation changes to

K ¼
1

2

Z
V0

r0 _xi _xi dV0 ¼
r0l0
4

Z
A0

ð _xiðzÞ _xiðzÞÞ
node1 dA0 þ

r0l0
4

Z
A0

ð _xiðzÞ _xiðzÞÞ
node2 dA0, (55)

where A0 is the cross-section area, considered constant along the element and z is the distance
(orthogonal to the central line) of the considered point and the central line. The values _xi are the
velocity in the ith direction at the cross-section, placed at each node. At nodes, the position and
velocity of such points are

x1 ¼ x ¼ X þ z sinðYÞ, (56)

x2 ¼ y ¼ Y þ zð1� cosðYÞÞ, (57)

_x1 ¼ _x ¼ _X þ z cosðYÞ _Y, (58)

_x2 ¼ _y ¼ _Y þ z sinðYÞ _Y. (59)

Substituting these values into Eq. (55) one has

K ¼
r0l0
4

A0ð _X 1Þ
2
þ

r0l0
4

I0 cos
2ðY1Þð _Y1Þ

2
þ
r0l0
4

A0ð _X 2Þ
2
þ

r0l0
4

I0 cos
2ðY2Þð _Y2Þ

2

þ
r0l0
4

A0ð _Y 1Þ
2
þ

r0l0
4

I0 sin
2
ðY1Þð _Y1Þ

2
þ

r0l0
4

A0ð _Y 2Þ
2
þ

r0l0
4

I0 sin
2
ðY2Þð _Y2Þ

2. ð60Þ
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Eq. (60) is easily simplified to

K ¼
r0l0
4

A0ð _X 1Þ
2
þ

r0l0
4

I0ð _Y1Þ
2
þ

r0l0
4

A0ð _Y 1Þ
2
þ
r0l0
4

A0ð _X 2Þ
2
þ

r0l0
4

I0ð _Y2Þ
2
þ

r0l0
4

A0ð _Y 2Þ
2.

(61)

From this equation one writes simply

M ¼
q2K

qX kqX s

¼
1

2

r0A0l0 0 0 0 0 0

0 r0A0l0 0 0 0 0

0 0 r0I0l0 0 0 0

0 0 0 r0A0l0 0 0

0 0 0 0 r0A0l0 0

0 0 0 0 0 r0I0l0

2
6666666664

3
7777777775

(62)

and

F inert: ¼
qK

qX s

¼M €X s. (63)

4.2.2. Consistent mass matrix for small rotations

Imagining a rotating frame, like in corotational formulations, it is possible to test the
applicability of the linear consistent mass matrix for the adopted finite element, which is done
considering sinðyÞ ¼ tgðyÞ ¼ y and cosðyÞ ¼ 1 for expressions (1)–(8). Following a similar
procedure as the one described for concentrated mass one has

M ¼
q2K

qX kqX s

¼

r0A0l0

3
0 0

0
156r0A0l0

420
þ

12r0I0
10l0

� �
22r0A0 l0ð Þ

2

420
þ

r0I0
10

� �

0
22r0A0 l0ð Þ

2

420
þ
r0I0
10

� �
4r0A0 l0ð Þ

3

420
þ

r0I0l0
30

� �

r0A0l0

6
0 0

0
54r0A0l0

420
�
12r0I0
10l0

� �
13r0A0 l0ð Þ

2

420
þ

r0I0
10

� �

0
�13r0A0 l0ð Þ

2

420
þ

r0I0
10

� �
�13r0A0 l0ð Þ

3

420
þ

r0I0l0
30

� �

2
66666666666666666666666664
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r0A0l0

6
0 0

0
54r0A0l0

420
�
12r0I0
10l0

� �
�13r0A0 l0ð Þ

2

420
þ

r0I0
10

� �

0
13r0A0 l0ð Þ

2

420
þ

r0I0
10

� �
�13r0A0 l0ð Þ

3

420
þ

r0I0l0
30

� �

r0A0l0

3
0 0

0
156r0A0l0

420
þ

12r0I0
10l0

� �
�22r0A0 l0ð Þ

2

420
þ

r0I0
10

� �

0
�22r0A0 l0ð Þ

2

420
þ

r0I0
10

� �
4r0A0 l0ð Þ

3

420
þ

4r0I0l0
30

� �

3
77777777777777777777777775

ð64Þ

F inert: ¼
qK

qX s

¼M €X s. (65)

4.2.3. Consistent mass matrix for large rotations

From Bernoulli hypothesis one writes for any point of the element:

x ¼ xcentral þ z sinðYÞ, (66)

y ¼ ycentral þ zð1� cosðYÞÞ, (67)

_x ¼ _xcentral þ z cosðYÞ _Y, (68)

_y ¼ _ycentral þ z sinðYÞ _Y. (69)

Substituting these values into Eq. (55) and integrating regarding the cross-section results in

K ¼
r0A0l0

2

Z
l0

ð _xcentralÞ
2 dxþ

r0A0l0

2

Z
l0

ð _ycentralÞ
2 dxþ

r0I0l0
2

Z
l0

ð_yÞ2 dx

¼ K1 þ K2 þ K3. ð70Þ

The first term of Eq. (70) is easily integrated, giving

K1 ¼
r0A0l0

2

1

3
ð _X 1Þ

2
þ

1

6
_X 1
_X 2 þ

1

3
ð _X 2Þ

2

� 	
. (71)

In order to facilitate the mathematical procedure but keeping the rotating inertia contribution
even for slender bars, one assumes a linear behavior for _y along the bar resulting in

K3 ¼
r0I0l0

2

1

3
ð _Y1Þ

2
þ

1

6
_Y1
_Y2 þ

1

3
ð _Y2Þ

2

� 	
. (72)
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To develop K2 one writes the following relation from Eqs. (3) and (7)

_ycentral ¼ _cx3 þ _dx2 þ _exþ _Y 1. (73)

The values of _c; _d and _e are calculated from Eqs. (4)–(6) as

_c ¼ ½ðsec2y1Þ_y1 þ ðsec2y2Þ_y2�lx þ ½tg y1 þ tg y2�_lx � 2_ly, (74)

_d ¼ 3_ly � ½2ðsec
2y1Þ_y1 þ ðsec2y2Þ_y2�lx � ½2tg y1 þ tg y2�_lx, (75)

_e ¼ �ðsec2y1Þ_y1lx þ tg y1 _lx. (76)

In this case, instead of starting from Eq. (24) one should use the developments performed to
achieve expression (32), remembering that the considered terms only regard _ycentral, as the others
are considered in Eqs. (71) and (72). Following similar steps used to develop the kernels of the
Hessian matrix one achieves the necessary kernels to built numerically the mass matrix, i.e.,

mks ¼
q2K2

qX sqX k

¼ r0l0A0

Z 1

0

q _ycðx;X iÞ

qX k

q _ycðx;X iÞ

qX s

þ _yðx;X iÞ
q2 _ycðx;X iÞ

qX sqX k

� �
dx, (77)

where index c is used to represent the central line.
Similar quantities, as depicted in Tables 1–5, are achieved and processed to produce the mass

matrix dependent of positions. It is necessary to comment that Newmark time approximation is
employed before performing the derivatives regarding nodal positions indicated in Eq. (77).
Deriving K1 and K3 regarding positions and performing the sum with terms of Eq. (77)

results in

M ¼
q2K

qX kqX s

¼

m11 þ
r0A0l0

3
m12 m13 m14 þ

r0A0l0

6
m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 þ
r0I0l0

3
m34 m35 m36 þ

r0I0l0
6

m41 þ
r0A0l0

6
m42 m43 m44 þ

r0A0l0

3
m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 þ
r0I0l0

6
m64 m56 m66 þ

r0I0l0
3

2
66666666666666664

3
77777777777777775

ð78Þ

Internal forces are calculated by

F inert: ¼
qK

qX s

¼M €X s. (79)
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4.3. Time marching process

From the previous developments Eq. (29) can be written as

f ¼
qUe

qX
� F þM €X þ C _X ¼ 0. (80)

Expression (80) represents the dynamic equilibrium equation at any time and has to be solved.
In order to do so the first step is to write this equilibrium for a specific instant (S+1), as follows:

qP
qX

����
Sþ1

¼
qUe

qX

����
Sþ1

� FSþ1 þM €X Sþ1 þ C _X Sþ1 ¼ 0. (81)

Applying the Newmark b approximations for position description one has

X Sþ1 ¼ X S þ Dt _X S þ Dt2
1

2
� b

� �
€X S þ b €X Sþ1

� 	
, (82)

_X Sþ1 ¼ _X S þ Dt 1� gð Þ €X S þ gDt €X Sþ1. (83)

Substituting approximations (82) and (83) into Eq. (81) results in

g X Sþ1ð Þ ¼
qP
qX

����
Sþ1

¼
qUe

qX

����
Sþ1

� FSþ1 þ
M

bDt2
X Sþ1 �MQS þ CRS þ

gC

bDt
X Sþ1 � gDtCQS ¼ 0,

(84)

where vectors QS and RS represent the dynamic contribution of the past, and are given by

QS ¼
X S

bDt2
þ

_X S

bDt
þ

1

2b
� 1

� �
€X S, (85)

RS ¼ _X S þ Dt 1� gð Þ €X S. (86)

Eq. (84) can be understood simply by g X Sþ1ð Þ ¼ 0 and is clearly nonlinear in X Sþ1ð Þ. As described
in Section 3, a Taylor expansion to solve this nonlinear equation regarding positions is applied, as
follows:

q2P
qX 2

����
Sþ1

¼ rg X Sþ1ð Þ ¼
q2Ue

qX 2

����
Sþ1

þ
M

bDt2
þ

gC
bDt

, (87)

where C is assumed proportional to M, see Eq. (25). From Eq. (40) one builds the Taylor series of
first order as

0 ¼ gðX Þ ffi g X 0
� �

þ rg X 0
� �

DX (88)

and derives the Newton–Raphson procedure to solve the nonlinear Eq. (84), i.e.,

rg X 0
� �

DX ¼ �g X 0
� �

, (89)

where X0 is a trial position (usually Xs) for XS+1 used in Eq. (84) to calculate g X 0
� �

. Solving DX

one calculates a new trial for X Sþ1 as

X Sþ1 ¼ X 0 þ DX . (90)
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Fig. 3. Newmark parameters stability regions.

M. Greco, H.B. Coda / Journal of Sound and Vibration 290 (2006) 1141–1174 1157
The acceleration must be corrected by an expression obtained from Eq. (82).

€X Sþ1 ¼
X Sþ1

bDt2
�QS. (91)

This equation is used in Eq. (83) to correct velocity. The stop criterion is given in Eq. (92), when a
chosen tolerance (TOL) is satisfied.

gðX 0Þ


 

pTOL: (92)

It must be noted that, before the first time step, the initial acceleration must be calculated as
follows

€X 0 ¼M�1 F0 �
qUe

qX

����
0

� C _X 0

� 	
. (93)

The Newmark parameters (g and b) can be chosen in order to achieve a stable algorithm, see
Fig. 3 [9]. For instance, using constant acceleration for a time step (g ¼ 0:50 and b ¼ 0:25) the
unconditional stability is obtained.
5. Simple nodal member connection

This section presents an easy way to introduce free nodal degrees of freedom into 2D frame
structures, i.e., articulated joints. This kind of connection is important for the analysis of
mechanisms. The numerical modeling is achieved on the FEM and the nodal degree of freedom
connection is done by kinetic compatibility.
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Fig. 4. Articulated joint degrees of freedom re-numbered.

Fig. 5. Usual rigid nodal frame connection.

Fig. 6. Other nodal free movement connections.

Fig. 7. Partial articulated joint between element 3 and the rigid sets 1–2.
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The contribution of a single finite element matrix (Hessian, mass or damping) to the global
matrix follows common degrees of freedom. The global degree of freedom kgl of a node k cannot
be given automatically by the formula kgl ¼ 3k � 1ð Þ. A degree of freedom re-numbering is needed
to build global matrices. For instance, in the case of an articulated joint, see Fig. 4, there are four
degrees of freedom in the common node.
The uncoupled nodal matrices H have the following form:

H1 ¼

A11 A12 A13

A12 A22 A23

A13 A23 A33

2
64

3
75; H2 ¼

B11 B12 B13

B12 B22 B23

B13 B23 B33

2
64

3
75. (94)
Fig. 8. Degrees of freedom re-numbering at the joint between the crank and connecting rod.

Fig. 9. Degrees of freedom re-numbering for the Peaucellier mechanism example.
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The new coupled nodal matrix, after the connection, acquires the form

H ¼

A11 þ B11 A12 þ B12 A13 B13

A12 þ B12 A22 þ B22 A23 B23

A13 A23 A33 0

B13 B23 0 B33

2
6664

3
7775. (95)

Instead, the usual rigid nodal frame connection has three degrees of freedom attached and does
not need renumbering, as shown in Fig. 5.
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Fig. 10. Flexible spin-up maneuver input data.

Fig. 11. Shape configurations and local system of coordinates.
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Fig. 6 presents other types of re-numbering. It is also possible to have a partial nodal
connection between one and more elements, as depicted in Fig. 7.
In Fig. 8 the re-numbering scheme used in example 3 is shown. In Fig. 9 the same is done for

example 4.
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Fig. 12. Displacement U1.
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Fig. 13. Displacement U2.
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6. Numerical examples

This section provides some selected examples in order to verify the good behavior of the
proposed formulation when dealing with general problems. It is important to note that the first
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Fig. 14. Relative rotation angle a.
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Fig. 15. Flexible beam, deformed shapes and rigid body motions —, first cycle.
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example is a benchmark of literature used to prove the capability of the proposed formulation to
model all the necessary inertial characteristics of large rotation situations. We take the
opportunity to show that, for slender bars, the rotational inertia of the cross-section is not
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Fig. 16. Relative difference among solutions: complete solution —, concentrated mass without rotational inertia

and with rotational inertia .
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Fig. 17. Relative difference among solutions: complete solution —, linear (corotational) without rotational inertia

and with rotational inertia .
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important in the whole movement. The comparison between the results of concentrated mass and
consistent linear mass distribution with the complete formulation also shows how the
simplifications in the mass matrix influence the total behavior of the analyzed structure.
In the second example another benchmark problem is analyzed, where the member connection

is used to model a slider–crank mechanism. In the third example Simo’s flexible beam in free flight
is modeled, showing the ability of the present formulation to analyze floating bodies developing
finite deformations. In the last example a more complete mechanism is modeled to show the
possibilities of the present formulation, including the mass proportional damping presented in the
previous section.
6.1. Spin-up maneuver

The first numerical example is a simple fixed flexible beam and a benchmark of nonlinear
dynamic formulations. It has been presented in several Refs. [3,8,13,14]. The spin-up maneuver is
subject to a turn function (c(t)), applied on the restricted node, see Fig. 10. This type of turn
function represents a typical helicopter blade rotation. The structure is approximated by a mesh
of 10 finite elements. Several combinations of different mass matrices are tested in order to
demonstrate that all effects, for this kind of analysis, have been captured.
The expressions of the turn function are presented in Eqs. (96) and (97).

c tð Þ ¼
2

5

t2

2
þ

15

2p

� �2

cos
2pt

15
� 1

� �" #
rad; 0ptp15, (96)

c tð Þ ¼ 6t� 45ð Þ rad; t415. (97)

In Fig. 11, rigid body motion, initial and deformed configurations are presented. A local system of
coordinates is created to compare results, where the displacements U1 and U2 are measured.
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Fig. 18. Flexible mechanism input data: moment function 1 and moment function 2 — .
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From positions X and Y, and the rotation (y) of the extreme node it is possible to calculate the
displacements U1 and U2, and the relative rotation (a) between the deformed configuration and
the rigid body motion, as follows.

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DX 2 þ DY 2

p
, (98)

b ¼ g� c, (99)
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Fig. 19. (a) Block horizontal position (X) for the two moment functions: moment function 1 — , moment function 2

. (b) Block horizontal position (X): moment function 2 .
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U1 ¼ S cos b, (100)

U2 ¼ S sin b, (101)

a ¼ y� c. (102)
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Fig. 20. Flexible mechanism deformed shapes for first moment function (first cycle) t ¼ 0.00 s , t ¼ 0.20 s ,

t ¼ 0.40s , t ¼ 0.60 s , t ¼ 0.80 s , t ¼ 1.00 s , t ¼ 1.20 s , t ¼ 1.30 s , t ¼ 1.35 s .
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Fig. 21. Flexible mechanism deformed shapes for first moment function (second cycle) t ¼ 0.00 s , t ¼ 1.40 s ,

t ¼ 1.50 s , t ¼ 1.60 s , t ¼ 1.65 s , t ¼ 1.70 s , t ¼ 1.75 s , t ¼ 1.85 s , t ¼ 1.90 s .
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Figs. 12–14 present displacements U1 and U2, and the relative rotation a, respectively, for the
complete mass representation. Fig. 15 present the deformed shapes and the rigid body motions of
the structure for some instants during the first cycle.
In Figs. 16 and 17 the longitudinal displacement differences among the response for different

mass representations are shown. The relative difference is calculated referring to the maximum
longitudinal displacement and considers the complete solution as the reference value. Two
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Fig. 22. Flexible mechanism deformed shapes for second moment function (first cycle) t ¼ 0.00 s , t ¼ 0.20 s ,
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Fig. 23. Flexible beam in free flight, input data.
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situations are considered for each comparison, with rotational inertia (WRI) and without
rotational inertia (NRI).
There are non-perceptive differences (Figs. 12–15) between the results obtained and the ones

found in Ref. [3]. One can see that the relative differences among the developed formulations are
small. The concentrated mass presents a maximum difference of 1.8% regarding the complete
formulation. As one can see the presence of rotational inertia (for cross-section) has almost no
influence when slender bars are being considered.
Fig. 24. Shapes for complete mass at instants: t ¼ 0.0 s , t ¼ 0.5 s , t ¼ 1.0 s , t ¼ 1.5 s , t ¼ 2.0 s

, t ¼ 2.5 s .

Fig. 25. Shapes for lumped mass at instants: t ¼ 0.0 s , t ¼ 0.5 s , t ¼ 1.0 s , t ¼ 1.5 s , t ¼ 2.0 s ,

t ¼ 2.5 s .
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Fig. 26. Shapes for linear consistent (corotational) mass at instants: t ¼ 0.0 s , t ¼ 0.5 s , t ¼ 1.0 s ,

t ¼ 1.5 s , t ¼ 2.0 s , t ¼ 2.5 s .
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Fig. 27. Close up of the first two revolutions, positions.

Fig. 28. Flexible Peaucellier mechanism input data.
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6.2. Slider–crank mechanism

The second numerical example is a flexible slider–crank mechanism subject to a moment
function (M(t)) applied on the crankshaft, see Fig. 18. Eqs. (103)–(105) present two different
functions for M(t). The connecting rod is more flexible than the crank and the slider block is
assumed rigid and without mass. The crank is discretized with 5 finite elements and the connecting
rod with 10 finite elements. This example is presented in Ref. [15].
The first moment function is an exponential function with asymptotic behavior in

M(t) ¼ 0.01Nm.

M tð Þ ¼ 0:01 1� e
�t

0:167

� �
Nm: (103)
Fig. 29. Moment load data.
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The second moment function has two phases, the first phase equal to Eq. (103) and the second
phase equal to zero.

M tð Þ ¼ 0:01 1� e
�t

0:167

� �
Nm; 0sptp0:7 s, (104)
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Fig. 31. Flexible mechanism deformation for time 0.106 s: initial shape - - - - -, node 20 rigid trajectory , flexible

mechanism position .
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Fig. 32. Flexible mechanism deformation for time 0.212 s: initial shape, - - - - - node 20 rigid trajectory , flexible

mechanism position .
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M tð Þ ¼ 0 Nm; t40:7 s. (105)

In Fig. 19a positions X of the rigid block are presented for the two moment functions. In Fig. 19b
the response to the second moment function, for a longer duration, is presented.
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Fig. 33. Flexible mechanism deformation for instant 0.384 s: initial shape - - - - -, node 20 rigid trajectory , flexible

mechanism position .
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Fig. 34. Flexible mechanism deformation for instant 0.550 s: initial shape - - - - -, node 20 rigid trajectory flexible

mechanism position .
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Some important values are compared with Ref. [15]. For the first moment function, the first
minimum position time is 1.015 s for both present and referred works. The first maximum position
time achieved by the present formulation is 1.390 s; the reference value is 1.395s. For the second
moment function the first minimum position time achieved by the present formulation is 1.095 s
and the reference value is 1.110 s. The first maximum instant for the proposed formulation is
1.810 s. Ref. [15] does not give the first maximum instant for this case.
Figs. 20 and 21 present the mechanism deformations for the first moment function considering

the first and second cycles, respectively. The deformations due to the bending become clear after
the second rotation cycle.
Fig. 22 presents the mechanism behavior for the second moment function, but just for the first

rotation cycle. In this case, the movement is smoother, without initial oscillations generated by the
deformations in the first moment function.

6.3. Flexible beam in free flight

Fig. 23 presents the geometry, physical properties and the applied loading of the flying beam.
The stiffness of the beam is low enough to exhibit finite deformations. The motion of the beam
during the load application is shown in Figs. 24–26, where the complete, lumped and linear
consistent masses are respectively considered.
In Fig. 27 a close up of the first two revolutions is shown. The results are in total agreement

with Ref. [3], a complete study using Reissner kinematics.

6.4. Peaucellier mechanism

The fourth numerical example is a Peaucellier mechanism [16]. The structure presented in
Fig. 28 is divided into 45 finite elements. The number of elements adopted for each member can be
identified in Fig. 28. When the members are considered rigid, node 20 presents a vertical
straightline trajectory. The main objective of this example is to analyze the horizontal deviations
that occur at node 20 when a flexible mechanism is considered. The moment load applied on the
crank at node 1 is shown in Fig. 29.
Fig. 30 presents the horizontal deviation at node 20 and Figs. 26–29 present the flexible

mechanism behavior. The achieved values of deviations are obviously unacceptable in machines
designed to work with small geometrical tolerances. The proposed formulation can be useful to
design this kind of machine considering admissible deviations. As expected, the viscosity reduces
deviations and can be considered in the analysis by the proposed formulation. For this analysis
the adopted damping parameter is l ¼ 20 day�1.
Figs. 31–34 show the deformed positions of the studied mechanism.
7. Conclusions

A new, simple and accurate formulation to solve dynamic geometrical nonlinear problems with
large deflections applied to multi-body analysis has been proposed. The formulation is based on
position description, simplifying the understanding and the implementation of large deflection
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analysis when compared with typical FEM formulations. The Newmark time integrator scheme
has been successfully applied to integrate positions along time. An explanatory section regarding
the way followed to consider free joints for multi-body plane analysis was given. Four examples
were shown demonstrating the accuracy and possibilities of the formulation, mainly for multi-
body applications. The influence of different mass matrix approaches has also been provided,
showing that the overall structural behavior is slightly affected by mass considerations when
slender bars are considered.
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